1.- Find the general term of this sequence: 2, 6, 12, 20, 30,...

a) n^{2}

b) n + n^{2}

c) 2n

d) None of them

2.- Calculate the first five terms of the sequence: 3n^{2} + 1

a) 4, 13, 28, 49, 76,...

b) 4, 14, 28, 49, 76,...

c) 4, 9, 16, 25, 36,...

d) 4, 13, 28, 49, 78,...

3.- Calculate the general term of this arithmetic progression: 2, 5, 8, 11, 14,...

a) 3 + 2(n-1)

b) 3n + 1

c) 3 + 3(n-1)

d) 3n - 1

4.- If you know that a_{2} = 8 and a_{6} = 28, find the general term of the arithmetic progression.

a) 5n + 2

b) 5n - 2

c) 4n

d) 2n + 4

5.- Calculate the sum of the first twenty terms of the sequence: 10, 14, 18, 22,...

a) 1920

b) 860

c) 960

d) 950

6.- Calculate the general term of the geomtric progression: 1, 4, 16, 64,...

a) 4^{n}

b) 4^{n+1}

c) 4·4^{n-1}

d) 4^{n-1}

7.- Knowing that a_{1} = 8 and a_{3} = 2, calculate the ratio of this geometric progression

a) r = 2

b) r = -2

c) r = 2 or -2

d) r = ±1/2

8.- Calculate the sum of the first eight terms of the geometric progression: 1, 3, 9, 27, 81,...

a) 3280

b) 3281

c) 1093

d) 2187

9.- Calculate the sum of the infinite terms of the sequence: 1, 1/3, 1/9, 1/27,...

a) 2/3

b) 3/2

c) 1

10.- A student decided on 1st of september to start reviewing his Maths during a fortnight, by doing everyday two exercises more than the previous one. If the first day he did an exercise, how many exercises will he do the last day, 15th of september?

a) 31 exercises

b) 29 exercises

c) 27 exercises

d) 30 exercises

Licensed under the Creative Commons Attribution Non-commercial Share Alike 3.0 License